# -*- coding: utf-8 -*-
import pulp as pulp
def solve_ilp(objective , constraints) :
print objective
print constraints
prob = pulp.LpProblem(
'LP1'
, pulp.LpMaximize)
prob += objective
for
cons
in
constraints :
prob += cons
print prob
status = prob.solve()
if
status != 1 :
#print 'status'
#print status
return
None
else
:
#return [v.varValue.real for v in prob.variables()]
return
[v.varValue.real
for
v
in
prob.variables()]
#解如下整数线性规划
#maximize z = c*x = 3*x1 + 4*x2 + 5*x3
#subject to :
#x1 2 3 >= 0
#x1 + 2*x2 < 20
#x2 + 3*x3 <= 40
V_NUM = 3
#变量,直接设置下限
variables = [pulp.LpVariable(
'X%d'
%i , lowBound = 0 , cat = pulp.LpInteger)
for
i
in
range(0 , V_NUM)]
#目标函数
c = [3 , 4 , 5]
objective = sum([c[i]*variables[i]
for
i
in
range(0 , V_NUM)])
#约束条件
constraints = []
a1 = [1 , 2 , 0]
constraints.append(sum([a1[i]*variables[i]
for
i
in
range(0 , V_NUM)]) <= 100)
a2 = [0 , 1 , 3]
constraints.append(sum([a2[i]*variables[i]
for
i
in
range(0 , V_NUM)]) <= 40)
print constraints
res = solve_ilp(objective , constraints)
print res