import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel=
'linear'
, C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title=
'Confusion matrix'
,
cmap=plt.cm.Blues):
""
"
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"
""
if
normalize:
cm = cm.astype(
'float'
) / cm.sum(axis=1)[:, np.newaxis]
print(
"Normalized confusion matrix"
)
else
:
print(
'Confusion matrix, without normalization'
)
print(cm)
plt.imshow(cm, interpolation=
'nearest'
, cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt =
'.2f'
if
normalize
else
'd'
thresh = cm.max() / 2.
for
i, j
in
itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment=
"center"
,
color=
"white"
if
cm[i, j] > thresh
else
"black"
)
color=
"white"
if
cm[i, j] > thresh
else
"black"
)
plt.tight_layout()
plt.ylabel(
'True label'
)
plt.xlabel(
'Predicted label'
)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
title=
'Confusion matrix, without normalization'
)
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title=
'Normalized confusion matrix'
)
plt.show()