• 技术文章 >头条

    Pytorch网络结构可视化

    PythonPython2019-06-26 12:45:03原创5883
    Pytorch网络结构可视化:PyTorch是使用GPU和CPU优化的深度学习张量库。

    安装

    可以通过以下的命令进行安装

    conda install pytorch-nightly -c pytorch
    conda install graphviz
    conda install torchvision
    conda install tensorwatch

    基于以下的版本:

    torchvision.__version__   '0.2.1'
    torch.__version__         '1.2.0.dev20190610'
    sys.version               '3.6.8 |Anaconda custom (64-bit)| (default, Dec 30 2018, 01:22:34) 
    [GCC 7.3.0]'

    载入库

    import sys
    import torch
    import tensorwatch as tw
    import torchvision.models

    网络结构可视化

    alexnet_model = torchvision.models.alexnet()
    tw.draw_model(alexnet_model, [1, 3, 224, 224])

    载入alexnet,draw_model函数需要传入三个参数,第一个为model,第二个参数为input_shape,第三个参数为orientation,可以选择'LR'或者'TB',分别代表左右布局与上下布局。

    在notebook中,执行完上面的代码会显示如下的图,将网络的结构及各个层的name和shape进行了可视化。

    360截图17500924153262.png

    统计网络参数

    可以通过model_stats方法统计各层的参数情况。

    360截图184702017611198.png

    tw.model_stats(alexnet_model, [1, 3, 224, 224])
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    [MAdd]: Dropout is not supported!
    [Flops]: Dropout is not supported!
    [Memory]: Dropout is not supported!
    alexnet_model.features
    Sequential(
      (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
      (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): ReLU(inplace=True)
      (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
      (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (7): ReLU(inplace=True)
      (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (9): ReLU(inplace=True)
      (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (11): ReLU(inplace=True)
      (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    )
    alexnet_model.classifier
    Sequential(
      (0): Dropout(p=0.5)
      (1): Linear(in_features=9216, out_features=4096, bias=True)
      (2): ReLU(inplace=True)
      (3): Dropout(p=0.5)
      (4): Linear(in_features=4096, out_features=4096, bias=True)
      (5): ReLU(inplace=True)
      (6): Linear(in_features=4096, out_features=1000, bias=True)
    )
    专题推荐:python
    上一篇:Python的函数式编程 下一篇:为什么我劝你别盲目追风Python?

    相关文章推荐

    • Python中的偏函数怎么用?• Python的logging日志模块怎么用?• Python如何读写配置文件?

    全部评论我要评论

    © 2021 Python学习网 苏ICP备2021003149号-1

  • 取消发布评论
  • 

    Python学习网