说明
1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。
2、用来减少数据集的维度,同时保持数据集中对方差贡献特征。
保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。
实例
1 2 3 4 5 6 7 8 9 10 11 12 |
|
以上就是Python特征降维的理解,希望对大家有所帮助。更多Python学习指路:python基础教程
本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。
说明
1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。
2、用来减少数据集的维度,同时保持数据集中对方差贡献特征。
保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。
实例
1 2 3 4 5 6 7 8 9 10 11 12 |
|
以上就是Python特征降维的理解,希望对大家有所帮助。更多Python学习指路:python基础教程
本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。
© 2021 Python学习网 苏ICP备2021003149号-1