说明
1、Sigmoid函数是生物学中常见的S型函数,也称为S型生长曲线。
2、在信息科学中,Sigmoid函数通常被用作神经网络的阈值函数,将变量映射到0,1之间 。
优缺点
优点:平滑、易于求导。
缺点:激活函数计算量大,反向传播求误差梯度时,求导涉及除法;反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。
实例
import matplotlib.pyplot as plt import numpy as np def sigmoid(x): # 直接返回sigmoid函数 return 1. / (1. + np.exp(-x)) def plot_sigmoid(): # param:起点,终点,间距 x = np.arange(-8, 8, 0.2) y = sigmoid(x) plt.plot(x, y) plt.show() if __name__ == '__main__': plot_sigmoid()
以上就是python中sigmoid函数的介绍,希望对大家有所帮助。更多Python学习指路:python基础教程
本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。