from pylab import *
from numpy import *
from scipy.ndimage import filters
def compute_harris_response(im,sigma=3):
""
" Compute the Harris corner detector response function
for each pixel in a graylevel image. "
""
# derivatives
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)
# compute components of the Harris matrix
Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma)
# determinant and trace
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy
return
Wdet / Wtr
def get_harris_points(harrisim,min_dist=10,threshold=0.1):
""
" Return corners from a Harris response image
min_dist is the minimum number of pixels separating
corners and image boundary. "
""
# find top corner candidates above a threshold
corner_threshold = harrisim.max() * threshold
harrisim_t = (harrisim > corner_threshold) * 1
# get coordinates of candidates
coords = array(harrisim_t.nonzero()).T
# ...and their values
candidate_values = [harrisim[c[0],c[1]]
for
c
in
coords]
# sort candidates (reverse to get descending order)
index = argsort(candidate_values)[::-1]
# store allowed point locations in array
allowed_locations = zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1
# select the best points taking min_distance into account
filtered_coords = []
for
i
in
index:
if
allowed_locations[coords[i,0],coords[i,1]] == 1:
filtered_coords.append(coords[i])
allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0
return
filtered_coords
def plot_harris_points(image,filtered_coords):
""
" Plots corners found in image. "
""
figure()
gray()
imshow(image)
plot([p[1]
for
p
in
filtered_coords],
[p[0]
for
p
in
filtered_coords],
'*'
)
axis(
'off'
)
show()