• 技术文章 >常见问题 >Python常见问题

    Python怎么实现贪婪排名算法?

    PythonPython2019-12-20 17:24:00原创2610
    通常情况下,不得不从其他CAD程序产生的文本或HTML文件来解析输入,这是个是单调乏味的工作,而通过以Python字典的形式提供理想的输入。 (有时用于解析输入文件的代码可以跟排名算法一样大或着更大)。

    让我们假设每个ISG测试都有一个名称,在确定的“时间”内运行,当模拟显示'覆盖'设计中的 一组编号的特性时。解析之后,所收集的输入数据由程序中的结果字典来表示。

    python学习网,大量的免费python视频教程,欢迎在线学习!

    results = {
    #  'TEST': ( TIME, set([COVERED_POINT ...])),
     'test_00': ( 2.08, set([2, 3, 5, 11, 12, 16, 19, 23, 25, 26, 29, 36, 38, 40])),
     'test_01': ( 58.04, set([0, 10, 13, 15, 17, 19, 20, 22, 27, 30, 31, 33, 34])),
     'test_02': ( 34.82, set([3, 4, 6, 12, 15, 21, 23, 25, 26, 33, 34, 40])),
     'test_03': ( 32.74, set([4, 5, 10, 16, 21, 22, 26, 39])),
     'test_04': (100.00, set([0, 1, 4, 6, 7, 8, 9, 11, 12, 18, 26, 27, 31, 36])),
     'test_05': ( 4.46, set([1, 2, 6, 11, 14, 16, 17, 21, 22, 23, 30, 31])),
     'test_06': ( 69.57, set([10, 11, 15, 17, 19, 22, 26, 27, 30, 32, 38])),
     'test_07': ( 85.71, set([0, 2, 4, 5, 9, 10, 14, 17, 24, 34, 36, 39])),
     'test_08': ( 5.73, set([0, 3, 8, 9, 13, 19, 23, 25, 28, 36, 38])),
     'test_09': ( 15.55, set([7, 15, 17, 25, 26, 30, 31, 33, 36, 38, 39])),
     'test_10': ( 12.05, set([0, 4, 13, 14, 15, 24, 31, 35, 39])),
     'test_11': ( 52.23, set([0, 3, 6, 10, 11, 13, 23, 34, 40])),
     'test_12': ( 26.79, set([0, 1, 4, 5, 7, 8, 10, 12, 13, 31, 32, 40])),
     'test_13': ( 16.07, set([2, 6, 9, 11, 13, 15, 17, 18, 34])),
     'test_14': ( 40.62, set([1, 2, 8, 15, 16, 19, 22, 26, 29, 31, 33, 34, 38])),
     }

    贪婪排名算法的核心是对当前选择测试的子集进行排序:

    至少用一个测试集覆盖尽可能大的范围。

    经过第一个步骤,逐步减少测试集,同时覆盖尽可能大的范围。

    给选择的测试做出一个排序,这样小数据集的测试也可以选择使用

    完成上述排序后,接下来就可以优化算法的执行时间了

    当然,他需要能在很大的测试集下工作。

    贪婪排名算法的工作原理就是先选择当前测试集的某一项的最优解,然后寻找下一项的最优解,依次进行...

    如果有两个以上的算法得出相同的执行结果,那么将以执行”时间“来比较两种算法优劣。

    用下面的函数完成的算法:

    def greedyranker(results):
      results = results.copy()
      ranked, coveredsofar, costsofar, round = [], set(), 0, 0
      noncontributing = []
      while results:
        round += 1
        # What each test can contribute to the pool of what is covered so far
        contributions = [(len(cover - coveredsofar), -cost, test)
                 for test, (cost, cover) in sorted(results.items()) ]
        # Greedy ranking by taking the next greatest contributor        
        delta_cover, benefit, test = max( contributions )
        if delta_cover > 0:
          ranked.append((test, delta_cover))
          cost, cover = results.pop(test)
          coveredsofar.update(cover)
          costsofar += cost
        for delta_cover, benefit, test in contributions:
          if delta_cover == 0:
            # this test cannot contribute anything
            noncontributing.append( (test, round) )
            results.pop(test)
      return coveredsofar, ranked, costsofar, noncontributing

    每次while循环(第5行),下一个最好的测试会被追加到排名和测试,不会 丢弃贡献的任何额外覆盖(37-41行)

    上面的函数是略显简单,所以我花了一点时间用tutor来标注,当运行时打印出它做的。

    函数(有指导):

    它完成同样的事情,但代码量更大,太繁冗:

    def greedyranker(results, tutor=True):
      results = results.copy()
      ranked, coveredsofar, costsofar, round = [], set(), 0, 0
      noncontributing = []
      while results:
        round += 1
        # What each test can contribute to the pool of what is covered so far
        contributions = [(len(cover - coveredsofar), -cost, test)
                 for test, (cost, cover) in sorted(results.items()) ]
        if tutor:
          print('\n## Round %i' % round)
          print(' Covered so far: %2i points: ' % len(coveredsofar))
          print(' Ranked so far: ' + repr([t for t, d in ranked]))
          print(' What the remaining tests can contribute, largest contributors first:')
          print('  # DELTA, BENEFIT, TEST')
          deltas = sorted(contributions, reverse=True)
          for delta_cover, benefit, test in deltas:
            print('   %2i,  %7.2f,  %s' % (delta_cover, benefit, test))
          if len(deltas)>=2 and deltas[0][0] == deltas[1][0]:
            print(' Note: This time around, more than one test gives the same')
            print('    maximum delta contribution of %i to the coverage so far'
                % deltas[0][0])
            if deltas[0][1] != deltas[1][1]:
              print('    we order based on the next field of minimum cost')
              print('    (equivalent to maximum negative cost).')
            else:
              print('    the next field of minimum cost is the same so')
              print('    we arbitrarily order by test name.')
          zeroes = [test for delta_cover, benefit, test in deltas
               if delta_cover == 0]
          if zeroes:
            print(' The following test(s) cannot contribute more to coverage')
            print(' and will be dropped:')
            print('  ' + ', '.join(zeroes))
      
        # Greedy ranking by taking the next greatest contributor        
        delta_cover, benefit, test = max( contributions )
        if delta_cover > 0:
          ranked.append((test, delta_cover))
          cost, cover = results.pop(test)
          if tutor:
            print(' Ranking %s in round %2i giving extra coverage of: %r'
                % (test, round, sorted(cover - coveredsofar)))
          coveredsofar.update(cover)
          costsofar += cost
      
        for delta_cover, benefit, test in contributions:
          if delta_cover == 0:
            # this test cannot contribute anything
            noncontributing.append( (test, round) )
            results.pop(test)
      if tutor:
        print('\n## ALL TESTS NOW RANKED OR DISCARDED\n')
      return coveredsofar, ranked, costsofar, noncontributing

    每一块以 if tutor开始: 添加以上代码

    样值输出

    调用排序并打印结果的代码是:

    totalcoverage, ranking, totalcost, nonranked = greedyranker(results)
    print('''
    A total of %i points were covered,
    using only %i of the initial %i tests,
    and should take %g time units to run.
      
    The tests in order of coverage added:
        
      TEST DELTA-COVERAGE'''
     % (len(totalcoverage), len(ranking), len(results), totalcost))
    print('\n'.join(' %6s %i' % r for r in ranking))

    结果包含大量东西,来自tutor并且最后跟着结果。

    对这个伪随机生成15条测试数据的测试案例,看起来只需要七条去产生总覆盖率。(而且如果你愿意放弃三条测试,其中每个只覆盖了一个额外的点,那么15条测试中的4条就将给出92.5%的可能覆盖率)。

    专题推荐:python 贪婪算法
    上一篇:Psyco模块能优化Python的运行速度吗? 下一篇:Python中的__name__怎么用?

    相关文章推荐

    • 为什么推荐你学Python?• 怎么理解Python中包的引入?• Python中的反射怎么用?• Python中and、or用法实例

    全部评论我要评论

    © 2021 Python学习网 苏ICP备2021003149号-1

  • 取消发布评论
  • 

    Python学习网