• 技术文章 >常用工具 >Spyder

    怎么使用spyder的帮助

    爱喝马黛茶的安东尼爱喝马黛茶的安东尼2020-01-16 14:02:11原创10722

    在使用Spyder时,有可能要查询某个函数或者某个模块的具体用法。

    1、要查看模块的作用说明、简介,可以直接在交互区直接输入:

    1

    print( 模块名.__doc__)

    例如:要查看pandas的介绍

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    In [1]:print(pd.__doc__)

    pandas - a powerful data analysis and manipulation library for Python

    =====================================================================

    **pandas** is a Python package providing fast, flexible, and expressive data

    structures designed to make working with "relational" or "labeled" data both

    easy and intuitive. It aims to be the fundamental high-level building block for

    doing practical, **real world** data analysis in Python. Additionally, it has

    the broader goal of becoming **the most powerful and flexible open source data

    analysis / manipulation tool available in any language**. It is already well on

    its way toward this goal.

    Main Features

    -------------

    Here are just a few of the things that pandas does well:

      - Easy handling of missing data in floating point as well as non-floating

        point data

      - Size mutability: columns can be inserted and deleted from DataFrame and

        higher dimensional objects

      - Automatic and explicit data alignment: objects can  be explicitly aligned

        to a set of labels, or the user can simply ignore the labels and let

        `Series`, `DataFrame`, etc. automatically align the data for you in

        computations

      - Powerful, flexible group by functionality to perform split-apply-combine

        operations on data sets, for both aggregating and transforming data

      - Make it easy to convert ragged, differently-indexed data in other Python

        and NumPy data structures into DataFrame objects

      - Intelligent label-based slicing, fancy indexing, and subsetting of large

        data sets

      - Intuitive merging and joining data sets

      - Flexible reshaping and pivoting of data sets

      - Hierarchical labeling of axes (possible to have multiple labels per tick)

      - Robust IO tools for loading data from flat files (CSV and delimited),

        Excel files, databases, and saving/loading data from the ultrafast HDF5

        format

      - Time series-specific functionality: date range generation and frequency

        conversion, moving window statistics, moving window linear regressions,

        date shifting and lagging, etc.

    2、想知道某个函数的用法可以使用:

    1

    help(函数名)

    例如:要查询pandas的fillna的使用方法

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    In [2] :help(x.fillna)

    Help on method fillna in module pandas.core.frame:

    fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.

    core.frame.DataFrame instance

        Fill NA/NaN values using the specified method

        Parameters

        ----------

        value : scalar, dict, Series, or DataFrame

            Value to use to fill holes (e.g. 0), alternately a

            dict/Series/DataFrame of values specifying which value to use for

            each index (for a Series) or column (for a DataFrame). (values not

            in the dict/Series/DataFrame will not be filled). This value cannot

            be a list.

        method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None

            Method to use for filling holes in reindexed Series

            pad / ffill: propagate last valid observation forward to next valid

            backfill / bfill: use NEXT valid observation to fill gap

        axis : {0 or 'index', 1 or 'columns'}

        inplace : boolean, default False

            If True, fill in place. Note: this will modify any

            other views on this object, (e.g. a no-copy slice for a column in a

            DataFrame).

        limit : int, default None

            If method is specified, this is the maximum number of consecutive

            NaN values to forward/backward fill. In other words, if there is

            a gap with more than this number of consecutive NaNs, it will only

            be partially filled. If method is not specified, this is the

            maximum number of entries along the entire axis where NaNs will be

            filled. Must be greater than 0 if not None.

        downcast : dict, default is None

            a dict of item->dtype of what to downcast if possible,

            or the string 'infer' which will try to downcast to an appropriate

            equal type (e.g. float64 to int64 if possible)

        See Also

        --------

        reindex, asfreq

        Returns

        -------

        filled : DataFrame

    Python学习网,有大量免费的Spyder使用教程,欢迎大家学习!

    专题推荐:spyder 帮助
    上一篇:怎么同时运行两个spyder 下一篇:怎么设置spyder的对齐线

    相关文章推荐

    • spyder怎么切换Python版本• 怎样设置spyder文件保存位置• 怎样看spyder中有哪些库

    全部评论我要评论

    © 2021 Python学习网 苏ICP备2021003149号-1

  • 取消发布评论
  • 

    Python学习网