• 技术文章 >Python爬虫 >爬虫进阶

    数据可视化matplotlib

    流芳流芳2020-05-26 15:12:11转载4000
    Python9.jpg

    import matplotlib.pyplot as plt
    import numpy as np
    import numpy.random as randn
    import pandas as pd
    from pandas import Series,DataFrame
    from pylab import mpl
    mpl.rcParams['axes.unicode_minus'] = False # 我自己配置的问题
    plt.rc('figure', figsize=(10, 6)) # 设置图像大小
    
    %matplotlib inline

    1. figure对象

    Matplotlib的图像均位于figure对象中。

    fig = plt.figure()

    2. subplot子图

    ax1 = fig.add_subplot(2,2,1)
    ax2 = fig.add_subplot(2,2,2)
    ax3 = fig.add_subplot(2,2,3)
    ax4 = fig.add_subplot(2,2,4)
    random_arr = randn.rand(50)
    # 默认是在最后一次使用subplot的位置上作图
    plt.plot(random_arr,'ro--') # r:表示颜色为红色,o:表示数据用o标记 ,--:表示虚线
    # 等价于:
    # plt.plot(random_arr,linestyle='--',color='r',marker='o')
    plt.show()

    09.jpg

    # hist:直方图:统计分布情况
    plt.hist(np.random.rand(8), bins=6, color='b', alpha=0.3) 
    # bins:数据箱子个数
    (array([ 3.,  0.,  0.,  0.,  2.,  3.]),
     array([ 0.10261627,  0.19557319,  0.28853011,  0.38148703,  0.47444396,
             0.56740088,  0.6603578 ]),
     <a list of 6 Patch objects>)

    04.jpg

    # 散点图
    plt.scatter(np.arange(30), np.arange(30) + 3 * randn.randn(30))

    15.jpg

    # 柱状图
    fig, ax = plt.subplots()
    x = np.arange(5)
    y1, y2 = np.random.randint(1, 25, size=(2, 5))
    width = 0.25
    ax.bar(x, y1, width, color='r') 
    # 画柱子ax.bar(x+width, y2, width, color='g') 
    # 画柱子ax.set_xticks(x+width)
    ax.set_xticklabels(['a', 'b', 'c', 'd', 'e']) # 下标注明

    15.jpg

    fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) # 共享轴坐标

    51.jpg

    plt.subplots_adjust(left=0.5,top=0.5)
    fig, axes = plt.subplots(2, 2)

    53.jpg

    random_arr = randn.randn(8)
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].hist(random_arr, bins=16, color='k', alpha=0.5)
    axes[0, 1].plot(random_arr,'ko--')
    x = np.arange(8)
    y = x + 5 * np.random.rand(8)
    axes[1,0].scatter(x, y)
    x = np.arange(5)
    y1, y2 = np.random.randint(1, 25, size=(2, 5))
    width = 0.25axes[1,1].bar(x, y1, width, color='r') # 画柱子
    axes[1,1].bar(x+width, y2, width, color='g') # 画柱子
    axes[1,1].set_xticks(x+width)
    axes[1,1].set_xticklabels(['a', 'b', 'c', 'd', 'e']) # 下标注明

    03.jpg

    random_arr1 = randn.randn(8)
    random_arr2 = randn.randn(8)
    fig, ax = plt.subplots()
    ax.plot(random_arr1,'ko--',label='A')
    ax.plot(random_arr2,'b^--',label='B')
    plt.legend(loc='best') # 自动选择放置图例的最佳位置

    17.jpg

    fig, ax = plt.subplots(1)
    ax.plot(np.random.randn(380).cumsum())
    
    # 设置刻度范围a
    x.set_xlim([0, 500])
    
    # 设置显示的刻度(记号)
    ax.set_xticks(range(0,500,100))
    
    # 设置刻度标签
    ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
    rotation=30, fontsize='small')
    
    # 设置坐标轴标签ax.set_xlabel('X:...')
    ax.set_ylabel('Y:...')
    
    # 设置标题
    ax.set_title('Example')

    44.jpg

    3. Plotting functions in pandas

    plt.close('all')
    s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
    s
    fig,ax = plt.subplots(1)
    s.plot(ax=ax,style='ko--')

    314.jpg

    fig, axes = plt.subplots(2, 1)
    data = Series(np.random.rand(16), index=list('abcdefghijklmnop'))
    data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7)
    data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)

    51.jpg

    df = DataFrame(np.random.randn(10, 4).cumsum(0),
                   columns=['A', 'B', 'C', 'D'],
                   index=np.arange(0, 100, 10))
    df
    ABCD
    0-0.5238221.061179-0.882215-0.267718
    10-0.178175-0.367573-1.465189-1.095390
    200.2761660.816511-0.3445571.297281
    300.5294000.159374-2.7651681.784692
    40-1.129003-1.665272-2.7465123.140976
    500.265113-1.821224-5.1408502.377449
    60-2.699879-3.895255-5.0115611.715174
    70-2.384257-3.480928-4.5191312.805369
    80-2.525243-3.031608-4.8401251.106624
    90-2.020589-3.519473-4.8232920.522323
    df.plot() # 列索引为图例,行索引为横坐标,值为纵坐标

    44.jpg

    df = DataFrame(np.random.randint(0,2,(10, 2)),
                   columns=['A', 'B'],
                   index=np.arange(0, 10, 1))
    df
    AB
    001
    101
    210
    301
    410
    510
    611
    700
    810
    910
    df.plot(kind='bar')

    58.jpg

    df.A.value_counts().plot(kind='bar')

    15.jpg

    df.A[df.B == 1].plot(kind='kde')   
    df.A[df.B == 0].plot(kind='kde')    # 密度图

    33.jpg

    df = DataFrame(np.random.rand(6, 4),
                   index=['one', 'two', 'three', 'four', 'five', 'six'],
                   columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
    df
    GenusABCD
    one0.7607500.9511590.6431810.792940
    two0.1372940.0054170.6856680.858801
    three0.2574550.7219730.9689510.043061
    four0.2981000.1212930.4006580.236369
    five0.4639190.5370550.6759180.487098
    six0.7986760.2391880.9155830.456184
    df.plot(kind='bar',stacked='True') #行索引:横坐标

    24.jpg

    values = Series(np.random.normal(0, 1, size=200))
    values.hist(bins=100, alpha=0.3, color='k', normed=True)
    values.plot(kind='kde', style='k--')

    59.jpg

    df = DataFrame(np.random.randn(10,2),
                   columns=['A', 'B'],
                   index=np.arange(0, 10, 1))
    df
    plt.scatter(df.A, df.B)

    06.jpg

    更多python相关文章请关注python自学网

    专题推荐:可视化
    上一篇:jieba库的运用 下一篇:seaborn绘制各种图形

    相关文章推荐

    • Python与Echarts相结合的可视化工具:pyecharts

    全部评论我要评论

    © 2021 Python学习网 苏ICP备2021003149号-1

  • 取消发布评论
  • 

    Python学习网