1、说明
pandas提供了一个类似于关系数据库的连接(join)操作的方法merage,可以根据一个或多个键将不同DataFrame中的行连接起来。
2、语法
merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False)
3、参数
left与right:两个不同的DataFrame
how:指的是合并(连接)的方式有inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner
on : 指的是用于连接的列索引名称。必须存在右右两个DataFrame对象中,如果没有指定且其他参数也未指定则以两个DataFrame的列名交集做为连接键
left_on:左则DataFrame中用作连接键的列名;这个参数中左右列名不相同,但代表的含义相同时非常有用。
right_on:右则DataFrame中用作 连接键的列名
left_index:使用左则DataFrame中的行索引做为连接键
right_index:使用右则DataFrame中的行索引做为连接键
sort:默认为True,将合并的数据进行排序。在大多数情况下设置为False可以提高性能
suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(’_x’,’_y’)
copy:默认为True,总是将数据复制到数据结构中;大多数情况下设置为False可以提高性能
indicator:在 0.17.0中还增加了一个显示合并数据中来源情况;如只来自己于左边(left_only)、两者(both)
4、实例
import pandas as pd left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) result = pd.merge(left, right, on='key') # on参数传递的key作为连接键 result Out[4]: A B key C D 0 A0 B0 K0 C0 D0 1 A1 B1 K1 C1 D1 2 A2 B2 K2 C2 D2 3 A3 B3 K3 C3 D3
以上就是python merge()的连接,希望对大家有所帮助。更多Python学习指路:python基础教程